Index
Quantum computing uses tiny particles (qubits) that can be 0, 1, or both at once (superposition) to solve huge problems much faster than regular computers, which use bits (just 0 or 1). By harnessing quantum physics, these computers explore many possibilities simultaneously, allowing them to tackle complex tasks like drug design or complex modeling that are impossible for today's best machines.
Quantum cryptography is the science of exploiting quantum mechanical properties such as quantum entanglement, measurement disturbance, no-cloning theorem, and the principle of superposition to perform various cryptographic tasks. Historically defined as the practice of encoding messages, a concept now referred to as encryption, quantum cryptography plays a crucial role in the secure processing, storage, and transmission of information across various domains.
One aspect of quantum cryptography is quantum key distribution (QKD), which offers an information-theoretically secure solution to the key exchange problem. The advantage of quantum cryptography lies in the fact that it allows the completion of various cryptographic tasks that are proven or conjectured to be impossible using only classical (i.e. non-quantum) communication. Furthermore, quantum cryptography affords the authentication of messages, which allows the legitimates parties to prove that the messages were not wiretaped during transmission. For example, in a cryptographic set-up, it is impossible to copy with perfect fidelity, the data encoded in a quantum state. If one attempts to read the encoded data, the quantum state will be changed due to wave function collapse (no-cloning theorem). This could be used to detect eavesdropping in QKD schemes, or in quantum communication links and networks. These advantages have significantly influenced the evolution of quantum cryptography, making it practical in today's digital age, where devices are increasingly interconnected and cyberattacks have become more sophisticated. As such quantum cryptography is a critical component in the advancement of a quantum internet, as it establishes robust mechanisms to ensure the long-term privacy and integrity of digital communications and systems.
In future generation networks, IoT will play a pivotal role. Massive distributed sensing will be necessary to enable the metaverse, human telepresence, and the Tactile Internet. Sensors on human and machines, and in the environment will create interactions among real objects/environment/humans with digital ones in a mixed or virtual reality. This poses unprecedented challenges on IoT systems in terms of massive data mining and processing, which imply communication, computing, and sensing issues. In fact, the massive sensing expected hardly can satisfy those mentioned scenarios, which require very stringent KPIs in terms of end-to-end latency, energy usage, sustainability, and security. That is why new communication, computing, and sensing resources are necessary which can go beyond what classical technologies can offer. This imply the use of quantum technologies and resources like entanglement to address the design of future efficient and effective IoT systems. The Quantum IoT can represent the means to realise the metaverse and the immersion of human sensorial experience in the mixed reality by also satisfying the societal objectives of sustainability and trustworthiness.